
6.4.2 The Top-Level Scope

Matters become more complex when we contemplate top-level definitions in many lan-
guages. For instance, some versions of Scheme (which is a paragon of lexical scoping)
allow you to write this:

(define y 1)

(define (f x) (+ x y))

which seems to pretty clearly suggest where the y in the body of f will come from,
except:

(define y 1)

(define (f x) (+ x y))

(define y 2)

is legal and (f 10) produces 12. Wait, you might think, always take the last one! But:

(define y 1)

(define f (let ((z y)) (lambda (x) (+ x y z))))

(define y 2)

Here, z is bound to the first value of y whereas the inner y is bound to the second
value. There is actually a valid explanation of this behavior in terms of lexical scope, Most “scripting”

languages exhibit
similar problems.
As a result, on the
Web you will find
enormous confusion
about whether a
certain language is
statically- or
dynamically-
scoped, when in
fact readers are
comparing behavior
inside functions
(often static)
against the top-level
(usually dynamic).
Beware!

but it can become convoluted, and perhaps a more sensible option is to prevent such
redefinition. Racket does precisely this, thereby offering the convenience of a top-level
without its pain.

6.5 Exposing the Environment
If we were building the implementation for others to use, it would be wise and a cour-
tesy for the exported interpreter to take only an expression and list of function defini-
tions, and invoke our defined interp with the empty environment. This both spares
users an implementation detail, and avoids the use of an interpreter with an incorrect
environment. In some contexts, however, it can be useful to expose the environment
parameter. For instance, the environment can represent a set of pre-defined bindings:
e.g., if the language wishes to provide pi automatically bound to 3.2 (in Indiana).

7 Functions Anywhere
The introduction to the Scheme programming language definition establishes this de-
sign principle:

Programming languages should be designed not by piling feature on top
of feature, but by removing the weaknesses and restrictions that make ad-
ditional features appear necessary. [REF]

31



As design principles go, this one is hard to argue with. (Some restrictions, of course,
have good reason to exist, but this principle forces us to argue for them, not admit them
by default.) Let’s now apply this to functions.

One of the things we stayed coy about when introducing functions (section 5) is
exactly where functions go. We may have suggested we’re following the model of an
idealized DrRacket, with definitions and their uses kept separate. But, inspired by the
Scheme design principle, let’s examine how necessary that is.

Why can’t functions definitions be expressions? In our current arithmetic-centric
language we face the uncomfortable question “What value does a function definition
represent?”, to which we don’t really have a good answer. But a real programming
language obviously computes more than numbers, so we no longer need to confront
the question in this form; indeed, the answer to the above can just as well be, “A
function value”. Let’s see how that might work out.

What can we do with functions as values? Clearly, functions are a distinct kind of
value than a number, so we cannot, for instance, add them. But there is one evident
thing we can do: apply them to arguments! Thus, we can allow function values to
appear in the function position of an application. The behavior would, naturally, be to
apply the function. Thus, we’re proposing a language where the following would be a
valid program (where I’ve used brackets so we can easily identify the function)

(+ 2 ([define (f x) (* x 3)] 4))

and would evaluate to (+ 2 (* 4 3)), or 14. (Did you see that I just used substitu-
tion?)

7.1 Functions as Expressions and Values
Let’s first define the core language to include function definitions:

<expr-type> ::=

(define-type ExprC

[numC (n : number)]

[idC (s : symbol)]

<app-type>
[plusC (l : ExprC) (r : ExprC)]

[multC (l : ExprC) (r : ExprC)]

<fun-type>)

For now, we’ll simply copy function definitions into the expression language. We’re
free to change this if necessary as we go along, but for now it at least allows us to reuse
our existing test cases.

<fun-type-take-1> ::=

[fdC (name : symbol) (arg : symbol) (body : ExprC)]

We also need to determine what an application looks like. What goes in the function
position of an application? We want to allow an entire function definition, not just

32



its name. Because we’ve lumped function definitions in with all other expressions,
let’s allow an arbitrary expression here, but with the understanding that we want only
function definition expressions: We might consider

more refined
datatypes that split
function definitions
apart from other
kinds of
expressions. This
amounts to trying to
classify different
kinds of
expressions, which
we will return to
when we study
types. [REF]

<app-type> ::=

[appC (fun : ExprC) (arg : ExprC)]

With this definition of application, we no longer have to look up functions by name,
so the interpreter can get rid of the list of function definitions. If we need it we can
restore it later, but for now let’s just explore what happens with function definitions are
written at the point of application: so-called immediate functions.

Now let’s tackle interp. We need to add a case to the interpreter for function
definitions, and this is a good candidate:

[fdC (n a b) expr]

Do Now!

What happens when you add this?

Immediately, we see that we have a problem: the interpreter no longer always returns
numbers, so we have a type error.

We’ve alluded periodically to the answers computed by the interpreter, but never
bothered gracing these with their own type. It’s time to do so now.

<answer-type-take-1> ::=

(define-type Value

[numV (n : number)]

[funV (name : symbol) (arg : symbol) (body : ExprC)])

We’re using the suffix of V to stand for values, i.e., the result of evaluation. The
pieces of a funV will be precisely those of a fdC: the latter is input, the former is output.
By keeping them distinct we allow each one to evolve independently as needed.

Now we must rewrite the interpreter. Let’s start with its type:
<interp-hof> ::=

(define (interp [expr : ExprC] [env : Env]) : Value

(type-case ExprC expr

<interp-body-hof>))

This change naturally forces corresponding type changes to the Binding datatype
and to lookup.

Exercise

Modify Binding and lookup, appropriately.

<interp-body-hof> ::=

33



[numC (n) (numV n)]

[idC (n) (lookup n env)]

<app-case>
<plus/mult-case>
<fun-case>

Clearly, numeric answers need to be wrapped in the appropriate numeric answer
constructor. Identifier lookup is unchanged. We have to slightly modify addition and
multiplication to deal with the fact that the interpreter returns Values, not numbers:

<plus/mult-case> ::=

[plusC (l r) (num+ (interp l env) (interp r env))]

[multC (l r) (num* (interp l env) (interp r env))]

It’s worth examining the definition of one of these helper functions:

(define (num+ [l : Value] [r : Value]) : Value

(cond

[(and (numV? l) (numV? r))

(numV (+ (numV-n l) (numV-n r)))]

[else

(error 'num+ "one argument was not a number")]))

Observe that it checks that both arguments are numbers before performing the addition.
This is an instance of a safe run-time system. We’ll discuss this topic more when we
get to types. [REF]

There are two more cases to cover. One is function definitions. We’ve already
agreed these will be their own kind of value:

<fun-case-take-1> ::=

[fdC (n a b) (funV n a b)]

That leaves one case, application. Though we no longer need to look up the func-
tion definition, we’ll leave the code structured as similarly as possible:

<app-case-take-1> ::=

[appC (f a) (local ([define fd f])

(interp (fdC-body fd)

(extend-env (bind (fdC-arg fd)

(interp a env))

mt-env)))]

In place of the lookup, we reference f which is the function definition, sitting right
there. Note that, because any expression can be in the function definition position, we
really ought to harden the code to check that it is indeed a function.

Do Now!

34



What does is mean? That is, do we want to check that the function def-
inition position is syntactically a function definition (fdC), or only that it
evaluates to one (funV)? Is there a difference, i.e., can you write a program
that satisfies one condition but not the other?

We have two choices:

1. We can check that it syntactically is an fdC and, if it isn’t reject it as an error.

2. We can evaluate it, and check that the resulting value is a function (and signal an
error otherwise).

We will take the latter approach, because this gives us a much more flexible language.
In particular, even if we can’t immediately imagine cases where we, as humans, might
need this, it might come in handy when a program needs to generate code. And we’re
writing precisely such a program, namely the desugarer! (See section 7.5.) As a result,
we’ll modify the application case to evaluate the function position:

<app-case-take-2> ::=

[appC (f a) (local ([define fd (interp f env)])

(interp (funV-body fd)

(extend-env (bind (funV-arg fd)

(interp a env))

mt-env)))]

Exercise

Modify the code to perform both versions of this check.

And with that, we’re done. We have a complete interpreter! Here, for instance, are
some of our old tests again:

(test (interp (plusC (numC 10) (appC (fdC 'const5 '_ (numC 5)) (numC 10)))

mt-env)

(numV 15))

(test/exn (interp (appC (fdC 'f1 'x (appC (fdC 'f2 'y (plusC (idC 'x) (idC 'y)))

(numC 4)))

(numC 3))

mt-env)

"name not found")

7.2 Nested What?
The body of a function definition is an arbitrary expression. A function definition is it-
self an expression. That means a function definition can contain a...function definition.
For instance:

<nested-fdC> ::=

35



(fdC 'f1 'x

(fdC 'f2 'x

(plusC (idC 'x) (idC 'x))))

Evaluating this isn’t very interesting:

(funV 'f1 'x (fdC 'f2 'x (plusC (idC 'x) (idC 'x))))

But suppose we apply the above function to something:
<applied-nested-fdC> ::=

(appC <nested-fdC>
(numC 4))

Now the answer becomes more interesting:

(funV 'f2 'x (plusC (idC 'x) (idC 'x)))

It’s almost as if applying the outer function had no impact on the inner function at all.
Well, why should it? The outer function introduces an identifier which is promptly
masked by the inner function introducing one of the same name, thereby masking the
outer definition if we obey static scope (as we should!). But that suggests a different
program:

(appC (fdC 'f1 'x

(fdC 'f2 'y

(plusC (idC 'x) (idC 'y))))

(numC 4))

This evaluates to:

(funV 'f2 'y (plusC (idC 'x) (idC 'y)))

Hmm, that’s interesting.
Do Now!

What’s interesting?

To see what’s interesting, let’s apply this once more:

(appC (appC (fdC 'f1 'x

(fdC 'f2 'y

(plusC (idC 'x) (idC 'y))))

(numC 4))

(numC 5))

This produces an error indicating that the identifier representing x isn’t bound!
But it’s bound by the function named f1, isn’t it? For clarity, let’s switch to repre-

senting it in our hypothetical Racket syntax:

36



((define (f1 x)

((define (f2 y)

(+ x y))

4))

5)

On applying the outer function, we would expect x to be substituted with 5, resulting
in

((define (f2 y)

(+ 5 y))

4)

which on further application and substitution yields (+ 5 4) or 9, not an error.
In other words, we’re again failing to faithfully capture what substitution would

have done. A function value needs to remember the substitutions that have already On the other hand,
observe that with
substitution, as
we’ve defined it, we
would be replacing
x with (numV 4),
resulting in a
function body of
(plusC (numV 5)

(idC 'y)), which
does not type. That
is, substitution is
predicated on the
assumption that the
type of answers is a
form of syntax. It is
actually possible to
carry through a
study of even very
advanced
programming
constructs under
this assumption, but
we won’t take that
path here.

been applied to it. Because we’re representing substitutions using an environment, a
function value therefore needs to be bundled with an environment. This resulting data
structure is called a closure.

While we’re at it, observe that the appC case above uses funV-arg and funV-

body, but not funV-name. Come to think of it, why did a function need a name? so
that we could find it. But if we’re using the interpreter to find the function for us, then
there’s nothing to find and fetch. Thus the name is merely descriptive, and might as
well be a comment. In other words, a function no more needs a name than any other
immediate constant: we don’t name every use of 3, for instance, so why should we
name every use of a function? A function is inherently anonymous, and we should
separate its definition from its naming.

(But, you might say, this argument only makes sense if functions are always written
in-place. What if we want to put them somewhere else? Won’t they need names then?
They will, and we’ll return to this (section 7.5).)

7.3 Implementing Closures
We need to change our representation of values to record closures rather than raw
function text:

<answer-type> ::=

(define-type Value

[numV (n : number)]

[closV (arg : symbol) (body : ExprC) (env : Env)])

While we’re at it, we might as well alter our syntax for defining functions to drop
the useless name. This construct is historically called a lambda:

<fun-type> ::=

[lamC (arg : symbol) (body : ExprC)]

37



When encountering a function definition, the interpreter must now remember to
save the substitutions that have been applied so far: “Save the

environment!
Create a closure
today!” —Cormac
Flanagan

<fun-case> ::=

[lamC (a b) (closV a b env)]

This saved set, not the empty environment, must be used when applying a function:
<app-case> ::=

[appC (f a) (local ([define f-value (interp f env)])

(interp (closV-body f-value)

(extend-env (bind (closV-arg f-value)

(interp a env))

(closV-env f-value))))]

There’s actually another possibility: we could use the environment present at the
point of application:

[appC (f a) (local ([define f-value (interp f env)])

(interp (closV-body f-value)

(extend-env (bind (closV-arg f-value)

(interp a env))

env)))]

Exercise

What happens if we extend the dynamic environment instead?

In retrospect, it becomes even more clear why we interpreted the body of a function
in the empty environment. When a function is defined at the top-level, it is not “closed
over” any identifiers. Therefore, our previous function applications have been special
cases of this form of application.

7.4 Substitution, Again
We have seen that substitution is instructive in thinking through how to implement
lambda functions. However, we have to be careful with substitution itself! Suppose we
have the following expression (to give lambda functions their proper Racket syntax):

(lambda (f)

(lambda (x)

(f 10)))

Now suppose we substitute for f the following expression: (lambda (y) (+ x y)).
Observe that it has a free identifier (x), so if it is ever evaluated, we would expect to
get an unbound identifier error. Substitution would appear to give:

(lambda (x)

((lambda (y) (+ x y)) 10))

38



But observe that this latter program has no free identifiers!
That’s because we have too naive a version of substitution. To prevent unexpected

behavior like this (which is a form of dynamic binding), we need to define capture-
free substitution. It works roughly as follows: we first consistently rename all bound
identifiers to entirely previously unused (known as fresh) names. Imagine that we
give each identifier a numeric suffix to attain freshness. Then the original expression
becomes

(lambda (f1)

(lambda (x1)

(f1 10)))

(Observe that we renamed f to f1 in both the binding and bound locations.) Now let’s
do the same with the expression we’re substituting:

(lambda (y1) (+ x y1))

Now let’s substitute for f1: Why didn’t we
rename x? Because
x may be a
reference to a
top-level binding,
which should then
also be renamed.
This is simply
another application
of the consistent
renaming principle.
In the current
setting, the
distinction is
irrelevant.

(lambda (x1)

((lambda (y1) (+ x y1)) 10))

...and x is still free! This is a good form of substitution.
But one moment. What happens if we try the same example in our environment-

based interpreter?
Do Now!

Try it out.

Observe that it works correctly: it reports an unbound identifier error. Environ-
ments automatically implement capture-free substitution!

Exercise

In what way does using an environment avoid the capture problem of sub-
stitution?

7.5 Sugaring Over Anonymity
Now let’s get back to the idea of naming functions, which has evident value for program
understanding. Observe that we do have a way of naming things: by passing them to
functions, where they acquire a local name (that of the formal parameter). Anywhere
within that function’s body, we can refer to that entity using the formal parameter name.

Therefore, we can take a collection of function definitions and name them using
other...functions. For instance, the Racket code

(define (double x) (+ x x))

(double 10)

could first be rewritten as the equivalent

39



(define double (lambda (x) (+ x x)))

(double 10)

We can of course just inline the definition of double, but to preserve the name, we
could write this as:

((lambda (double)

(double 10))

(lambda (x) (+ x x)))

Indeed, this pattern—which we will pronounce as “left-left-lambda”—is a local nam-
ing mechanism. It is so useful that in Racket, it has its own special syntax:

(let ([double (lambda (x) (+ x x))])

(double 10))

where let can be defined by desugaring as shown above.
Here’s a more complex example:

(define (double x) (+ x x))

(define (quadruple x) (double (double x)))

(quadruple 10)

This could be rewritten as

(let ([double (lambda (x) (+ x x))])

(let ([quadruple (lambda (x) (double (double x)))])

(quadruple 10)))

which works just as we’d expect; but if we change the order, it no longer works—

(let ([quadruple (lambda (x) (double (double x)))])

(let ([double (lambda (x) (+ x x))])

(quadruple 10)))

—because quadruple can’t “see” double. so we see that top-level binding is different
from local binding: essentially, the top-level has an “infinite scope”. This is the source
of both its power and problems.

There is another, subtler, problem: it has to do with recursion. Consider the sim-
plest infinite loop:

(define (loop-forever x) (loop-forever x))

(loop-forever 10)

Let’s convert it to let:

(let ([loop-forever (lambda (x) (loop-forever x))])

(loop-forever 10))

40



Seems fine, right? Rewrite in terms of lambda:

((lambda (loop-forever)

(loop-forever 10))

(lambda (x) (loop-forever x)))

Clearly, the loop-forever on the last line isn’t bound!
This is another feature we get “for free” from the top-level. To eliminate this mag-

ical force, we need to understand recursion explicitly, which we will do soon [REF].

8 Mutation: Structures and Variables
It’s time for another

Which of these is the same?

• f = 3

• o.f = 3

• f = 3

Assuming all three are in Java, the first and third could behave exactly like each
other or exactly like the second: it all depends on whether f is a local identifier (such
as a parameter) or a field of the object (i.e., the code is really this.f = 3).

In either case, we are asking the evaluator to permanently change the value bound
to f. This has important implications for other observers. Until now, for a given set
of inputs, a computation always returned the same value. Now, the answer depends on
when it was invoked: above, it depends on whether it was invoked before or after the
value of f was changed. The introduction of time has profound effects on reasoning
about programs.

However, there are really two quite different notions of change buried in the uni-
form syntax above. Changing the value of a field (o.f = 3 or this.f = 3) is ex-
tremely different from changing that of an identifier (f = 3 where f is bound inside
the method, not by the object). We will explore these in turn. We’ll tackle fields below,
and return to identifiers in section 8.2.

8.1 Mutable Structures
8.1.1 A Simple Model of Mutable Structures

Objects are a generalization of structures, as we will soon see [REF]. Therefore, fields
in objects are a generalization of fields in structures and to understand mutation, it is
mostly (but not entirely! [REF]) sufficient to understand mutable objects. To be even
more reductionist, we don’t need a structure to have many fields: a single one will
suffice. We call this a box. In Racket, boxes support just three operations:

box : ('a -> (boxof 'a))

unbox : ((boxof 'a) -> 'a)

set-box! : ((boxof 'a) 'a -> void)

41


